Thursday, July 16, 2009

Liat Margolis and Aziza Chaouni


The Out of Water Project is both a traveling exhibition and a book scheduled to be published by Birkhauser Publishers in 2010.

Organized by Liat Margolis, co-author of Living Systems, and Aziza Chaouni, of Bureau E.A.S.T., the exhibition currently features 24 international case studies of innovative projects and technologies for water scarcity on multiple scale, plus 10 Futures Scenarios designed by invited young designers such as Fletcher Studio, Proxy and MatSys. The book will be more comprehensive in scope and will include a set of self-generated mappings of global water scarcity, as well as an in-depth catalogue of cross-referenced case studies and future scenarios.

The exhibition will travel to Ohio State University this Fall semester. Previously, it was presented at the Daniels Faulty of Architecture, Landscape and Design, University of Toronto. Mason White, who is a faculty member there, posted some of the projects in his blog, InfraNet Lab.

Below are some of the other projects, courtesy of Liat Margolis.

One is Porous Skin by Wayne Jenski.

Wayne Jenski


Quoting the project brief in full: “Porous adaptive membrane was developed as a deployable structure for a clinic for Doctors without Borders. The membrane consists of dispersed micro-pore structures. Those form a series of self-adjusting thermal flues, intended to regulate the temperature of the air as well as the collection of air-borne moisture. The morphology of the pore was developed to open and close in response to changes in ambient temperature, solar gain and humidity. The skin, through its pores collects, then conveys condensation via an inner skin down to a large water bladder. The bladder acts as the foundation ballast but is also used to filter and store local water for sanitation and drinking use. Condensation replenishes water supply. The bladder is oriented to absorb solar energy, utilizing the water as a heat sink to filter the collected water by solar radiation. Both skin and bladder operate in accordance with solar radiation to collect, convey and convert water.”

Another documents an existing infrastructure for effluent reclamation in Israel. The main organization in charge of this is KKL (Keren Kayemet LeIsrael), or JNF in English (Jewish National Fund), which is the philantropic organization overseeing all aforestation projects in Israel for the last 50 years. In the last 20 years or so, they started building waste water recycling infrastructure for agricultural irrigation.

Effluent reclamation in Israel


Again quoting the project brief in full: “Israel's reuse of wastewater accounts for 75% of crop irrigation and alleviates severe shortage of drinking water, which is comprised of 10% desalinated water (project to increase to 50% in the next 20 years). Without treated effluent, intensive agriculture would be impossible. This national program (KKL-JNF) consists of an interlinked network of over 200 open-air reservoirs, with static volume of 150 MCM and a dynamic volume (emptying and refilling) of 270 MCM of treated effluent a year. Those distribute water seasonally via an extensive pipe infrastructure. In the case of the Jezreel Valley, the most production valley in Israel, 15-20 MCM of effluent per year enable irrigation of 4000 ha of cotton . While loaded with fertilizing nutrients, effluent environmental quality is significantly ungraded due to settling and oxygenation, microbial breakdown of remaining organic matter, and UV to suppress pathogens.”

Next is a network of water storage units by Ruth Kedar. It is modeled after indigenous water management systems.

uth Kedar


Yet again quoting the project brief in full: “The cistern is a contemporary adaptation of historical and regional desert technologies. The modular storage structure utilizes available and pre-cast concrete to offer a kit of parts that can be sized and aggregated according to the catchment area, topographical conditions, and inhabitant demand. The cistern network is modeled after the Nabatean systems of runoff agriculture, which used very low channels and surface modification to collect water from great catchment areas. The reservoir employs the principles of the Qanat, an underground tunnel that diverts runoff into a series of vertical wells. Each cistern is outfitted with an outlet to interlink them together, but also allow for diversion toward irrigation. As the need for water increases, the system can be expanded to accommodate additional catchment and storage. Specifying a smaller reservoir and a shorter exposed conveyance distance can reduce evaporation.

Last is the Dixon Land Imprinting Machine, which was covered by InfraNet Lab but it's so cool that we're going to replicate it here and enter it into our archives.

Dixon machine


Final copy-paste: “Absorptive soil ensures against the devastation wrought by the twin desertification hazards of drought and deluge. The Dixon Land Imprinting machine restores the microroughness and macroporosity of compacted and barren soil to accelerate infiltration and revegetation processes. It is most effective in areas with low rainfall, degraded-, brushy-, rocky-, sandy-, and clayey soils, overgrazed ranges and abandoned agricultural land. The roller drops seeds onto the soil surface and imbeds them in the imprint surfaces. The imprinter forms interconnected water shedding and absorbing v-pockets, which function as rain fed micro-irrigation system. Down-slope furrows feed rainwater into cross-slope furrows where it collects and infiltrates. Revegetation is rapid because the imprints hold rainwater in place and captures seed, water and windblown plant litter, which works as mulch to suppress evaporation.”

We'll be pining for the rest of the projects, and if permitted, we'll post them here as they come in. We will certainly be posting updates on where and when the exhibition will be traveling to next. Keep a look out here for those.

0 Comments:

Post a Comment



 

FREE HOT VIDEO | HOT GIRL GALERRY